Definitions | grp_inv(g), grp_id(g), inverse(T; op; id; inv), monot(T; x,y.R(x;y); f), cancel(T; S; op), r - s, True, T, guard(T), P  Q, P   Q, P Q, P  Q, anti_sym(T; x,y.R(x;y)), trans(T; x,y.E(x;y)), refl(T; x,y.E(x;y)), connex(T; x,y.R(x;y)), order(T; x,y.R(x;y)), q_le(r; s), linorder(T; x,y.R(x;y)), t.2, t.1, grp_op(g), grp_le(g), qadd_grp, grp_car(g), abmonoid{i:l},  x,y. t(x;y), prop{i:l}, x:A. B(x), x f y, P Q, ocmon{i:l}, ocgrp{i:l}, t T, False, A, grp{i:l}, abgrp{i:l}, x(s1,s2), mon{i:l}, subtype(S; T) |